

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International Advanced Level In Further Pure Mathematics (WFM01) Paper 01

Question Number	Scheme	Notes	Marks
1(i)	$\mathbf{A} =$	$\begin{pmatrix} 3k & 4k-1 \\ 2 & 6 \end{pmatrix}$	
(a)	Forms det A The "= 0" can be Award for $3k \times 6$ If LHS is only seen expanded 2 terms of May use $ad = bc$ and condone det A	$4k-1$) = 0 \Rightarrow $k =$ = 0 and solves for k . implied by a solution for k . $6-2(4k-1) = 0 \Rightarrow k =$ of $18k-8k+2$ must be correct (implied by $10k$) a=bc-ad=0 but clear use of $ad+bc$ is M0	M1
	$(10k + 2 = 0 \Rightarrow k =) -\frac{1}{5}$ or -0.2	A1: Correct value. Accept $-\frac{2}{10}$	A1
(b)	M1: for $\begin{pmatrix} 6 & 1-4k \\ -2 & 3k \end{pmatrix}$ Ignore any m this matrix is labelled as \mathbf{A}^{-1} . All Allow if determinant incorporated provate \mathbf{A}^{-1} and \mathbf{A}^{-1} and simplified but if do to write e.g., $\frac{6}{10k+2}$ as $\frac{3}{5k+1}$. Allow of followed by an attempt at det(Adj(\mathbf{A})) and allow fraction to appear on the rig seen but this mark is not available if the	or e.g., $\frac{3}{5k+1} = \frac{1-4k}{10k+2}$ $\frac{-2}{0k+2} = \frac{3k}{10k+2}$ or e.g., $\frac{3}{5k+1} = \frac{1-4k}{10k+2}$ ultiplier and accept without one and condone if low unsimplified e.g., $\binom{6}{-2} = \binom{-4k-1}{-2}$ vided it is clear that the elements of Adj(A) are correct accorrect inverse ft their determinant in form eterminant incorporated there is no requirement different brackets e.g., [], {} but is M0 if a correct answer is they substitute a value of k into the determinant different brackets.	M1 A1ft
(!!)(a)		Deth valves identified an earnest metric (one	(2)
(ii)(a)	$p = q = -2 \text{ or } (\mathbf{B} =) \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$	Both values identified or correct matrix (any or no bracket). Allow "Both are -2" or "-2, -2"	B1
(b)	$p = -1$ $q = 1$ or $(\mathbf{B} =)\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	Both values identified or correct matrix (any or no bracket). Allow "-1, +1" (Mark in order presented). No trig expressions.	B1
			(2)
			Total 6

Question Number	Scheme	Notes	Marks
2	f(z) = z	$x^3 - 13z^2 + 59z + p$	
(a)	$[f(3) =]3^{3} - 13(3)^{2} + 59(3) + p$ or e.g., $27 - 117 + 177 + p$ or $z^{2} - 10z + 29$ $z - 3[z^{3} - 13z^{2} + 59z + p]$	Attempts f (3). Must see more than just $87 + p$ Allow one slip (e.g., a miscopy of one coefficient, or one incorrect value/sign if expression just given as $27 - 117 + 177 + p$)	
	$\frac{z^{3} - 3z^{2}}{-10z^{2} + 59z}$ $\frac{-10z^{2} + 30z}{29z + p}$ $\frac{29z - 87}{0}$	Alternatively long divides by $z-3$ obtaining a 3TQ with two terms of $z^2-10z+29$ correct. Could use synthetic division. An attempt at equating coefficients/factorising requires 2 correct values for the a , b and c of az^2+bz+c	M1
	$f(3) = 0 \Rightarrow p = -87 *$	Obtains " $p = -87$ " only with no errors but condone work in x "=0" must have been seen before $p = -87$ if f(3) attempted but allow just $p = -87$ following a full and correct attempt via division/equating coefficients etc with no errors.	A1* (shown as B1 on ePen)
			(2)
(b)	Allow equivalent work in x. Allow use of a calculator to solve a quadratic . Solutions that just follow $z^3 - 13z^2 + 59z - 87 = 0$ score no marks. There are no marks if $z^2 - 10z + 29$ has clearly been produced by using $(z - (5+2i))(z - (5-2i))$		
	$(z^{3}-13z^{2}+59z-87) \div (z-3)$ $= \dots \left[z^{2}-10z+29\right]$	M1: Uses $z \pm 3$ with $f(z)$ (not their $f(z)$) to obtain a 3TQ expression with evidence of any appropriate method including inspection (must be evidence of use of $z \pm 3$) or equating coefficients. Ignore any remainder if long division is used and may see $z^2 - 16z + 107 \left(r(-408)\right)$ if $z + 3$ used. Must be seen or referred to in (b) A1: Correct quadratic	M1 A1
	$z = \frac{-(-10) \pm \sqrt{(-10)^2 - (4)(1)(29)}}{2(1)}$ or $(z-5)^2 - 25 + 29 = 0 \Rightarrow z = 5 \pm \sqrt{-4}$	Solves their 3TQ arising from using $(z-3)$ only as a factor (usual rules but allow if one correct root if calculator used on their quadratic) If a sum/product of roots method is used on their 3TQ(i.e., $2a = -("-10")$, $a^2 + b^2 = "29"$) it must be complete and condone only sign errors. Do not allow just $5 \pm 2i$ following an incorrect quadratic	dM1
	$\left(z = \frac{10 \pm \sqrt{-16}}{2} = \right) 5 \pm 2i$	Requires previous M mark. $5 \pm 2i$ or $5 + 2i$, $5 - 2i$ only. Not $5 \pm 2\sqrt{-1}$ Accept $\pm 2i + 5$	A1
			(4)

Question Number	Scheme	Notes	Marks
2(c)	Look for this arrangement if correct but note potential ft	Correct diagram ft their $a \pm bi$ $(a, b \ne 0)$ Diagram should be roughly symmetrical in the real axis. The point on the negative x -axis should be further from the origin than the point on the positive x -axis but ignore any other scaling issues – just look for the $a \pm bi$ points to be placed in the correct quadrants, roughly aligned vertically and placed correctly relative to the given point that is on the same side of the y -axis. Points/axes may be unlabelled or mislabelled. If vectors/lines are used the end points must satisfy the conditions above.	B1ft
			(1)
(d)	$2\left(\sqrt{("5"-(-9))^2 + "2"^2} + \sqrt{("5"-3)^2 + "2"^2}\right)$	A correct numerical expression for the perimeter ft their $a \ne 0$ or 3 or -9 and $b \ne 0$ This mark requires working with points that would form a convex or concave kite where the x -axis is a line of symmetry. Working must be seen if $a \pm bi$ incorrect but allow just $4\sqrt{5} + 4\sqrt{17}$ oe from using $-5 \pm 2i$	M1
		$24\sqrt{2}$ or any simplified equivalent e.g., $12\sqrt{8}$ or $2\sqrt{288}$ but not $\sqrt{1152}$. Correct answer scores both marks and allow M1 A0 for just $\sqrt{1152}$	A1
			(2)
			Total 9

Question Number	Scheme	Notes	Marks
3	f(x) = x	$x^3 - 5\sqrt{x} - 4x + 7$	
(a)	$f(0.25)=3.515625, \frac{225}{64}, 3\frac{33}{64} f(1) = -1$	Attempts both f(0.25) and f(1) with one correct allowing awrt 3.52 for f(0.25)	M1
	examples: "1" refers to "-1" with sign corrected $ \frac{\alpha - 0.25}{"3.515625"} = \frac{1 - \alpha}{"1"} \Rightarrow \alpha = $ $ \frac{\alpha - 0.25}{"\frac{225}{64}"} = \frac{1 - \alpha}{"1"} \Rightarrow \alpha = $ $ \frac{\alpha - 0.25}{"3.515625"} = \frac{1 - 0.25}{"3.515625" + "1"} \Rightarrow \alpha = $ $ \frac{1 - \alpha}{"1"} = \frac{1 - 0.25}{"3.515625" + "1"} \Rightarrow \alpha = $	1(b)-1(a) "3.515625"-("-1")	M1
	${"1"} = {"3.515625" + "1"} \Rightarrow \alpha = \dots$ $[\alpha - 0.25 = 3.515625 - 3.515625\alpha$ $4.515625\alpha = 3.765625]$	or a correct partially processed equivalent and only allow formula followed by value if values for a , b , $f(a)$ and $f(b)$ are seen If e.g., A is used for $\alpha - 0.25$ then must see $A + 0.25$ later. Note that sight of 1.2981 or $\frac{209}{161}$ usually indicates a sign error.	
	$\alpha = 0.834$	awrt 0.834 (0.8339100346) Must be decimal. Ignore labelling and just look for this value. [Note: actual root is 0.767843]	A1
			(3)
Alt for last 2 marks (straight line equation)	e.g., $y = \frac{"3.515625" - "(-1)"}{0.25 - 1}x + c$ $(1, "-1") \Rightarrow -1 = -6.02083 + c$ $\Rightarrow c = 5.02083$ $y = 0 \Rightarrow \alpha = \frac{-5.02083}{-6.02083} = 0.834$	M1: Any full method to find the equation of the line between $(0.25, "3.515625")$ and $(1, "-1")$ and then uses $y = 0$ to find a value for α . Condone errors finding c and α but the initial equation should be correct for their $f(0.25)$ and $f(1)$ and the x and y coordinates should always be correctly placed. A1: awrt 0.834	M1 A1
(b)	$[f'(x) =] 3x^2 - \frac{5}{2}x^{-\frac{1}{2}} - 4$	ectly differentiated terms (this includes $7 \rightarrow 0$) Allow unsimplified e.g., $3 \times x^{3-1}$ 1: Fully correct simplified derivative	M1 A1
(2)		Hose a compact Newster Dealers France 1	(2)
(c)	$x_1 = 1.75 - \frac{1.75^3 - 5\sqrt{1.75} - 4(1.75) + 7}{"3(1.75)^2 - 2.5(1.75)^{-0.5} - 4"}$ $\left[= 1.75 - \frac{-1.255003278}{3.297677635} = 1.75 + 0.38057 \right]$	Uses a correct Newton-Raphson formula with $x_0 = 1.75$ and their $f'(x)$ to obtain a numerical expression for x_1 but implied by awrt 2.13 (2.13057185). Working must be seen if x_1 is wrong – allow " $x_0 = 1.75$, $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \dots$ " or $1.75 - \frac{f(1.75)}{f'(1.75)} = \dots$ "	M1
	$x_1 = 2.13057185 \Rightarrow \beta = 2.131$	awrt 2.131 (ignore labelling and just look for this value). Ignore further iterations. [Note: actual root is 2.011276]	A1
			(2)
			Total 7

Question Number	Scheme	Notes	Marks
4		z = 3 + 4i" is seen allow a maximum of B0M1A1M1A0	
(a)	$z^{2}-3 = (-3+4i)(-3+4i)-3$ $= 9-24i-16-3$ $= -10-24i$	Substitutes $z = -3 + 4i$ into $z^2 - 3$, expands and reaches $a + bi$ $(a, b \ne 0)$ Implied by $-10 - 24i$ seen and condone misapplication of the modulus e.g., using a + bi from $ -a - bi $	M1
	$\left z^2 - 3\right = \sqrt{10^{2} + 24^{2}}$	Correct expression for modulus of their $a+bi$ $(a, b \neq 0)$ Allow with no working for the modulus provided answer correct for their $a+bi$ Requires previous M mark.	dM1
	26	26 only from correct work. e.g., $ -10+24i = 26$ is A0 Answer only or without $-10-24i$ is no marks.	A1
		7 His wer only of without 10 241 is no marks.	(3)
(b)	$(z = -3 + 4i \Rightarrow) z^* = -3 - 4i$	Correct conjugate. Can be implied	B1
	$\frac{50}{z^*} = \frac{50}{-3 - 4i} \times \frac{-3 + 4i}{-3 + 4i} \left[= 50 \times \frac{-3 + 4i}{25} \right]$ or $\frac{1}{z^*} = \frac{1}{-3 - 4i} \times \frac{-3 + 4i}{-3 + 4i} \left[= \frac{-3 + 4i}{25} \right]$	A correct multiplier seen that would make the denominator real for $\frac{50}{z^*}$ or $\frac{1}{z^*}$ where $z^* = \pm 3 \pm 4i$ (except $-3 + 4i$). If the multiplier is not seen must see something better than $50 \times \frac{-3 + 4i}{25}$ or $\frac{-3 + 4i}{25}$ or $-6 + 8i$ e.g., $\frac{50}{z^*} = \frac{50(-3 + 4i)}{9 + 16}$	M1
	$\frac{50}{z^*} = 2(-3+4i)$ or $2z$	Obtains $2(-3+4i)$ or $2z$ Just -6 + 8i is insufficient Allow $k = 2$ provided "= kz " or "= $k(-3+4i)$ " is seen	A1
			(3)
Using Result	May see : $\frac{50}{-3-4i} = k(-1)$	$3+4i) \Rightarrow \frac{50}{9+16} = k \Rightarrow k = 2$	
	B1:Correct z^* M1: $\frac{50}{9+16} = k$ or	better after multiplication $A1*:k=2$	
Alt Using	$\frac{1}{z^*} = \frac{z}{ z ^2}$ oe e.g., $z^*z = z ^2$	States or uses $\frac{1}{z^*} = \frac{z}{ z ^2}$ oe	B1
$\frac{1}{z^*} = \frac{z}{ z ^2}$	$\frac{c}{z^*} = \frac{cz}{ z ^2}, z = \sqrt{3^2 + 4^2} = \dots$	Expresses $\frac{c}{z^*}$ as $\frac{cz}{ z ^2}$ and attempts $ z $ or $ z ^2$ where $c = 1$ or 50	M1
	$\frac{50}{z^*} = \frac{50z}{25} = 2z$	Correctly finds $2z$ Allow $k = 2$ provided "= kz " or "= $k(-3+4i)$ " is seen	A1

Question Number	Scheme	Notes	Marks
4(c)	$\arctan\left(\pm\frac{4}{3}\right) = \pm 0.927\left(53.13^{\circ}\right)$	Finds a relevant angle which could be in degrees correct to 2sf so accept awrt $\pm 0.93 (53^{\circ})$ or $\pm 0.64 (37^{\circ})$	
	or $\arctan\left(\pm \frac{3}{4}\right) = \pm 0.643(36.86^{\circ})$	If neither value is seen allow implication from the work	M1
	May see equivalent trig in which case the hypotenuse should be correct	May see e.g., $\tan^{-1} \left(\pm \frac{8}{6} \right) = \dots$	
		M0 if arg $2z$ replaced with 2 arg z	
	$\begin{bmatrix} a & - & 0.027205 & a & \pi & 0.642501 \end{bmatrix}$	Final answer of awrt $2.21 - $ do not isw . (n.b. $\theta = 2.214297436$)	
	$\theta = \pi - 0.927295 \theta = \frac{\pi}{2} + 0.643501$ $\theta = 2.21$	Final answer of e.g., " $\pi - 0.927$ " is A0 Answer only scores both marks.	A1
	0 2.21	Answer only in degrees (awrt 127°) is M1A0	
	Note: allow access to both ma	rks even if k in part (b) was incorrect	(2)
		•	Total 8

Question Number	Scheme	Notes	Marks
5	$5x^2$	-4x+2=0	
		ven quadratic/finding values for <i>p</i> and <i>q</i> are 0010 11010 if the relevant work is seen	
(a)(i)	$\frac{1}{p} \times \frac{1}{q} \text{ or } \frac{1}{pq} = \frac{2}{5} \Rightarrow pq = \frac{5}{2} *$	Shows product of roots = $\frac{2}{5}$ followed by $pq = \frac{5}{2}$ Minimum as shown. Allow e.g., $qp = 2.5$ Note that $\frac{1}{pq} = \frac{1}{\frac{2}{5}} \Rightarrow pq = \frac{5}{2}$ is B0 No clearly incorrect work/statements.	B1*
	(- / (- / (/	$\left x + \frac{1}{pq} = x^2 - \frac{4}{5}x + \frac{2}{5} \Rightarrow \frac{1}{pq} = \frac{2}{5} \Rightarrow pq = \frac{5}{2} *$ v incorrect work/statements.	
		$\frac{2}{5}$ requires conclusion e.g., "Hence true"	
(a)(ii)	$\frac{1}{p} + \frac{1}{q} = -\frac{(-4)}{5}$ $\frac{1}{p} + \frac{1}{q} = \frac{p+q}{2}$	Uses sum of roots to achieve a correct equation in p and q	M1
May use work from (i)	$\frac{1}{p} + \frac{1}{q} = \frac{p+q}{pq}$	States or uses $\frac{1}{p} + \frac{1}{q} = \frac{p+q}{pq}$	M1
	$\frac{p+q}{pq} = \frac{p+q}{\frac{5}{2}} = \frac{4}{5} \Rightarrow p+q = \frac{4}{5} \times \frac{5}{2} = 2$	p q pq $"p+q=2" from correct work.$ $Allow "2=q+p"$	A1
			(4)
Alt 1	$x \to \frac{1}{z} \Rightarrow 5\left(\frac{1}{z}\right)^2 - 4\left(\frac{1}{z}\right) + 2 = 0$	Correctly replaces x with e.g., $\frac{1}{z}$ and allow $\frac{1}{x}$	1st M1
$x \to \frac{1}{z}$	$2z^2 - 4z + 5 = 0$	Obtains a 3TQ in "z", "w" etc.	2 nd M1
	$pq = \frac{5}{2}$	States $pq = \frac{5}{2}$ following correct work	B1* 1 st mark
	p+q=2	" $p+q=2$ " from correct work	A1

Question Number	Scheme	Notes	Marks
5(b)	M1: For $p(q^2+1)+q$ or $(p^2+1)(q^2+1)$ Allow equivalents e.g., $pq(p+q)+p+q$ A1: Both correct (expression	$\frac{p}{p^2+1} \times \frac{q}{q^2+1} = \frac{pq}{p^2q^2+p^2+q^2+1}$ $(p^2+1) \to pq^2+p+p^2q+q$ $1) \to p^2q^2+p^2+q^2+1$ The provided the initial expansion has been carried out for denominator seen correctly once) $(pq)^2 \text{ unless it is clearly recovered}$	M1 A1
	$sum = \frac{pq(p+q)+p+q}{(pq)^2 + (p+q)^2 - 2pq + 1}$ $product = \frac{pq}{(pq)^2 + (p+q)^2 - 2pq}$ Obtains a value for either the new sum or $which could be their answer from part (a$ $could be inconsistent with$ At least one of their expressions must have in terms of pq and $p+q$ including at $Accept just sum = \frac{28}{25} \text{ or product} = \frac{2}{5} \text{ if } q$ $evidence of all of the above core$	$= \frac{\frac{5}{2} \times 2 + 2}{\left(\frac{5}{2}\right)^2 + 2^2 - 2 \times \frac{5}{2} + 1} = \frac{7}{\frac{25}{4}} = \dots \left(\frac{28}{25} \text{ or } 1.12\right)$ $= \frac{\frac{5}{2}}{\left(\frac{5}{2}\right)^2 + 2^2 - 2 \times \frac{5}{2} + 1} = \frac{\frac{5}{2}}{\frac{25}{4}} \dots \left(\frac{2}{5} \text{ or } 0.4\right)$ $= \frac{\frac{5}{2}}{\left(\frac{5}{2}\right)^2 + 2^2 - 2 \times \frac{5}{2} + 1} = \frac{\frac{5}{2}}{\frac{25}{4}} \dots \left(\frac{2}{5} \text{ or } 0.4\right)$ $= \frac{\frac{5}{2}}{\left(\frac{5}{2}\right)^2 + 2^2 - 2 \times \frac{5}{2} + 1} = \frac{\frac{5}{2}}{\frac{25}{4}} \dots \left(\frac{2}{5} \text{ or } 0.4\right)$ $= \frac{5}{2} \text{ and a value for } p + q$ $= \frac{5}{2} \text{ and a value for } p + q$ $= \frac{5}{2} \text{ and a value for } p + q$ $= \frac{1}{p} \text{ or it } p$ $= \frac{1}{p$	dM1
	$pq^{2} + p + p^{2}q + q = p + q + (p+q)(p^{2} + q^{2}) - (p^{3} + q^{2})$	tor of the sum it is possible to use $q^{3} = p + q + (p+q)((p+q)^{2} - 2pq) - ((p+q)^{3} - 3pq(p+q))$ $q \text{ and } p^{3} + q^{3} = (p+q)^{3} - 3pq(p+q) \text{ must be used}$	
		edded within $x^2 \pm (\text{sum})x \pm \text{product}$	
	$x^2 - \frac{28}{25}x + \frac{2}{5}$	pplies $x^2 - (sum)x + product$ correctly for their stated values for new sum and product. Not dependent.	M1
	$25x^2 - 28x + 10 = 0$	orrect quadratic (or integer multiple) with "= 0" Allow a different variable e.g., z for x Allow e.g., $a = 25$, $b = -28$, $c = 10$ provided $ax^2 + bx + c = 0$ is seen otherwise score M1A0	A1
			(5) Total 9

Question Number	Scheme	Notes	Marks
6(a)	$\begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}$	$ \int_{0}^{n} = \begin{pmatrix} 1 & (2^{n} - 1)r \\ 0 & 2^{n} \end{pmatrix} $	
		S & RHS indicated (or "true" seen) if not equated	
	$(LHS =) \begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^{1} \text{ or } \begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}$	$= \begin{pmatrix} 1 & (2^{1}-1)r \\ 0 & 2^{1} \end{pmatrix} \text{ or } \begin{pmatrix} 1 & (2-1)r \\ 0 & 2 \end{pmatrix} (=RHS)$	B1
	Assume true for $n =$	$k, \text{ i.e., } \begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^k = \begin{pmatrix} 1 & (2^k - 1)r \\ 0 & 2^k \end{pmatrix}$	
	$ \begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & (2^k - 1)r \\ 0 & 2^k \end{pmatrix} $	Uses $n = k$ result to form expression for $\begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^{k+1}$ Implied by 3 correct elements if they immediately multiply provided the result is not just the "given" answer and allow this to be the intermediate step	M1
	$= \begin{pmatrix} 1 & (2^{k} - 1)r + 2^{k} r \\ 0 & 2(2^{k}) \end{pmatrix} = \begin{pmatrix} 1 & (2^{k+1} - 1)r \\ 0 & 2^{k+1} \end{pmatrix}$	Correct result with intermediate step that involves the top right element and no errors seen in the algebra. Allow "meet in the middle" proofs. Only allow $(2^{k+1}-1)r$ written as $r(2^{k+1}-1)$ or $(-1+2^{k+1})r$ or $r(-1+2^{k+1})$. No $2(2^k)$ s for 2^{k+1}	A 1
	Alternatively: $ \begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & (2^k - 1)^k \\ 0 & 2^k \end{pmatrix} $		
	Correct conclusion "Assume true for $n = k$ tru The two previous marks are required and withheld for insufficient working prover verifications for $n = 2$ etc.	true for $n = k + 1$, true for all (positive integers) n or narrative. Minimum in bold . The for $n = k + 1$ is sufficient for the "then" of this mark can only follow B0 if the B mark was only ided there was an attempt with $n = 1$. Ignore further Condone "for all $n \in \mathbb{Z}$ " but not $n \in \mathbb{R}$ work with n used for k .	A1
	Congone		(4)
(b)(i)	$ \begin{pmatrix} 1 & -2 \\ 0 & 2 \end{pmatrix}^4 = \begin{pmatrix} 1 & (2^4 - 1)(-2) \\ 0 & 24 \end{pmatrix} = \begin{pmatrix} 1 & -36 \\ 0 & 16 \end{pmatrix} $	Correct matrix N. Could come from manual multiplication or calculator	B1
(ii)	$\mathbf{B} = \mathbf{NM} = \begin{pmatrix} 1 & -30 \\ 0 & 16 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 5 \end{pmatrix} = \dots$	Attempts NM with their N . Must not be MN . The N must have exactly three non-zero elements with 0 as the first element in the second row and their NM must have three elements correct for their matrices	M1
	$\begin{pmatrix} 4 & -150 \\ 0 & 80 \end{pmatrix}$	Correct matrix B	A1
	1.10.4.00.40.4.150		(3)
(c)		correct non-zero value for the determinant of their no more than two zero elements) and divides this result into 720 to obtain a value for the area	M1
	0 1	orrect area. Any exact equivalent. Must follow a correct B . Answer only is M1A1 if B correct.	A1
			(2)
			Total 9

Question Number	Scheme	Notes	Marks
7(a)	$\sum_{r=1}^{n} (12r^{2} + 2r - 3) = 12\sum_{r=1}^{n} r^{2} + 2\sum_{r=1}^{n} r - 3\sum_{r=1}^{n} 1$ $= 12 \times \frac{n}{6} (n+1)(2n+1) + 2 \times \frac{n}{2} (n+1) - 3n$ $\left[= 2n(n+1)(2n+1) + n(n+1) - 3n \right]$	M1: Expands summation to at least 2 separate sums with one correct (could be implied), uses $\sum_{r=1}^{n} r^2 = \frac{n}{6}(n+1)(2n+1)$ (allowing one of the following slips within the formula above: One of the 2 + signs seen as – or a missing first n) and replaces $\sum_{r=1}^{n} r$ with $\frac{n}{2}(n+1)$ or $\sum_{r=1}^{n} 1$ with n Condone r used for n for the first three marks only. Allow $\sum_{r=1}^{n} 1$ for $\sum_{r=1}^{n} 1$	M1 A1
		A1: Fully correct unsimplified expression	
	$\sum_{r=1}^{n} (12r^2 + 2r - 3) = 4n^3 + 6n^2 + 2n + n^2 + n - 3n = \dots$	Expands to a cubic and collects terms.	dM1
	$4n^3 + 7n^2$	Correct expression from correct work Allow $A = 4$, $B = 7$ following "= $An^3 + Bn^2$ "	A1
			(4)
(b)	Full marks in (b) does	not require full marks in (a)	
	$\sum_{r=1}^{2n} r^3 = \frac{(2n)^2}{4} (2n+1)^2$	Attempts to use the sum of cubes formula with $2n$ Allow one of the following two slips: $2n^2 \text{ for } (2n)^2$ Only one of the n 's in the formula replaced by $2n$	M1
	$\sum_{r=1}^{2n} r^3 - \sum_{r=1}^{n} (12r^2 + 2r - 3) =$ $4n^4 + 4n^3 + n^2 - 4^n n^3 - 7^n n^2 = 270$ $\Rightarrow 4n^4 - 6n^2 = 270$	Correct expanded quartic expression for $\sum_{r=1}^{2n} r^3 - \sum_{r=1}^{n} (12r^2 + 2r - 3) \text{ (ft their } An^3 + Bn^2)$ No requirement to collect terms but must be correct for their A and B if expression only seen with terms collected. If this is only seen as an equation it must be correct.	A1ft
	$4n^{4} - 6n^{2} - 270 = 0 \Rightarrow$ $2n^{4} - 3n^{2} - 135 = (2n^{2} + 15)(n^{2} - 9) = 0$ $\Rightarrow n^{2} = \dots$	Solves their 3TQ in n^2 (usual rules and allow for one correct root if no working). May change variable e.g., $n^2 \rightarrow x$ Ignore the labelling of roots (e.g. " $n =$ ") Allow for solving as a quartic if one root correct but requires $pn^4 + qn^2 + r = 0$ oe, $p, q, r \neq 0$ Requires previous M mark.	dM1
	$n^2 = 9 \Rightarrow n = 3$	n = 3 and no other unrejected solutions. $n = \pm 3$ is A0 Must follow a correct equation.	A1
			(4)
			Total 8

Question Number	Scheme	Notes	Marks
8	f(k)=	$=7^{k-1}+8^{2k+1}$	
	Apply the Way that be Condone work Allow use of -57 but if any different must additionally requires "114 is a multiple of/di Ignore work re the divisibility of $f(2)$, $f(3)$ et Final A1 : There must be evidence that the minimal and be scored in a conclusion or a $n = k$ " is seen in the work followed by "to	ral guidance: pest fits the overall approach. in e.g., n instead of k . altiples of 57 are involved, e.g., 114, the last A1 visible by (but not "factor of") 57" oe for each case of but starting with e.g., $f(2)$ scores a max of 01110. The for $n = k \Rightarrow$ true for $n = k + 1$ but it could be an narrative or via both. So if e.g., "Assume true for rue for $n = k + 1$ " in a conclusion this is sufficient. Le". Condone "for all $n \in \mathbb{Z}$ " but not $n \in \mathbb{R}$	
Way 1 $f(k+1)$	$n=1$: $f(1) = [7^0 + 8^3 =]513$, $513 \div 57 = 9$ oe	Obtains 513 for f(1) and shows 513 is divisible by 57. Allow $\frac{1+512}{57} = 9$	B1
-f(k)	$[f(k+1) =]7^{(k+1)-1} + 8^{2(k+1)+1} = 7^k + 8^{2k+3}$	Attempts $f(k+1)$	M1
	$[f(k+1)-f(k) =]$ $7(7^{k-1})-7^{k-1}+8^{2}(8^{2k+1})-8^{2k+1}$	Obtains expression for $f(k+1)-f(k)$ in 7^{k-1} and 8^{2k+1} only	M1
	$= 6(7^{k-1} + 8^{2k+1}) + 57(8^{2k+1})$ $\Rightarrow f(k+1) = 7f(k) + 57(8^{2k+1})$ or $= 63(7^{k-1} + 8^{2k+1}) - 57(7^{k-1})$ $\Rightarrow f(k+1) = 64f(k) - 57(7^{k-1})$	M1: Obtains expression for $f(k+1)$ in terms of $f(k)$. May not see $f(k+1) =$ A1: Correct expression. Must see $f(k+1) =$ Allow if e.g., $7f(k) \text{ written as } 7\left(7^{k-1} + 8^{2k+1}\right) \text{or } 7\left(7^{k-1}\right) + 7\left(8^{2k+1}\right)$	M1 A1
	Shown true for $n = 1$ and if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}^+$	Makes correct conclusion or narrative with no errors throughout. Minimum in bold . Requires all previous marks but can follow B0 if that mark was withheld for omitting to show that 513 is divisible by 57.	A1
XX. 2			(6)
$\mathbf{Way 2}$ $f(k+1) =$	$n=1$: $f(1) = [7^0 + 8^3 =]513$, $513 \div 57 = 9$ oe	Obtains 513 for f(1) and shows 513 is divisible by 57. Allow $\frac{1+512}{57} = 9$	B 1
	$[f(k+1)] = 7^{(k+1)-1} + 8^{2(k+1)+1} = 7^k + 8^{2k+3}$	Attempts $f(k+1)$	M1
	$[f(k+1)=]7(7^{k-1})+8^2(8^{2k+1})$	Obtains expression for $f(k+1)$ in 7^{k-1} and 8^{2k+1} only	M1
	$= 7(7^{k-1} + 8^{2k+1}) + 57(8^{2k+1})$ $\Rightarrow f(k+1) = 7f(k) + 57(8^{2k+1})$ or $= 64(7^{k-1} + 8^{2k+1}) - 57(7^{k-1})$ $\Rightarrow f(k+1) = 64f(k) - 57(7^{k-1})$	M1: Obtains expression for $f(k+1)$ in terms of $f(k)$. May not see $f(k+1) =$ A1: Correct expression. Must see $f(k+1) =$ Allow if e.g., $7f(k) \text{ written as } 7(7^{k-1} + 8^{2k+1}) \text{ or } 7(7^{k-1}) + 7(8^{2k+1})$	M1 A1
	Shown true for $n = 1$ and if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}^+$	Makes correct conclusion or narrative with no errors throughout. Minimum in bold . Requires all previous marks but can follow B0 if that mark was withheld for omitting to show that 513 is divisible by 57.	A1
			(6)

Question Number	Scheme	Notes	Marks
8 Way 3	$n=1$: $f(1) = [7^0 + 8^3 =]513$, $513 \div 57 = 9$ oe	Obtains 513 for f(1) and shows 513 is divisible by 57. Allow $\frac{1+512}{57} = 9$	B1
f(k+1)	$[f(k+1)] = 7^{(k+1)-1} + 8^{2(k+1)+1} = 7^k + 8^{2k+3}$	Attempts $f(k+1)$	M1
-mf(k)	$f(k+1) - mf(k)$ $= 7(7^{k-1}) - (7^{k-1})m + 8^{2}(8^{2k+1}) - (8^{2k+1})m$	Obtains expression for $f(k+1) - mf(k)$ in 7^{k-1} and 8^{2k+1} only	M1
	e.g., $m = 7 \Rightarrow$ $f(k+1) - 7f(k) = 57(8^{2k+1})$ $\Rightarrow f(k+1) = 7f(k) + 57(8^{2k+1})$ e.g., $m = 64 \Rightarrow$ $f(k+1) - 64f(k) = -57(7^{k-1})$ $\Rightarrow f(k+1) = 64f(k) - 57(7^{k-1})$	M1: Obtains expression for $f(k+1)$ in terms of $f(k)$ using a value for m . May not see $f(k+1) =$ A1: A correct expression. Must see $f(k+1) =$ Allow if $\beta f(k)$ written as $\beta \left(7^{k-1} + 8^{2k+1}\right)$ or $\beta \left(7^{k-1}\right) + \beta \left(8^{2k+1}\right)$	M1 A1
	Shown true for $n = 1$ and if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}^+$	Makes correct conclusion or narrative with no errors throughout. Minimum in bold . Requires all previous marks but can follow B0 if that mark was withheld for omitting to show that 513 is divisible by 57.	A1
			(6)
Way 4	$n=1$: $f(1) = [7^0 + 8^3 =]513$, $513 \div 57 = 9$ oe	Obtains 513 for f(1) and shows 513 is divisible by 57. Allow $\frac{1+512}{57} = 9$	B1
$f(k) = 57\lambda$	$[f(k+1)] = 7^{(k+1)-1} + 8^{2(k+1)+1} \left\{ = 7^k + 8^{2k+3} \right\}$	Attempts $f(k+1)$	M1
	$[f(k+1)=]7(7^{k-1})+8^2(8^{2k+1})$	Obtains expression for $f(k+1)$ in 7^{k-1} and 8^{2k+1} only	M1
	$= 7(7^{k-1} + 8^{2k+1}) + 57(8^{2k+1})$ $f(k) = 57\lambda \Rightarrow f(k+1) = 399\lambda + 57(8^{2k+1})$ $or = 7 \times 57\lambda + 57(8^{2k+1})$ or $= 64(7^{k-1} + 8^{2k+1}) - 57(7^{k-1})$ $f(k) = 57\lambda \Rightarrow f(k+1) = 64 \times 57\lambda - 57(7^{k-1})$ $or = 3648\lambda - 57(7^{k-1})$	M1: Obtains expression for $f(k+1)$ in terms of λ with $f(k) = 57\lambda$ seen. May not see $f(k+1) =$ A1: Correct expression Must see $f(k+1) =$	M1 A1
	Shown true for $n = 1$ and if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}^+$	Makes correct conclusion or narrative with no errors throughout. Minimum in bold . Requires all previous marks but can follow B0 if that mark was withheld for omitting to show that 513 is divisible by 57.	A1
			(6)
			Total 6

Question Number	Scheme	Notes	Marks	
9(a)	$\frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2} \qquad y + x = 0$ $\left(ct, \frac{c}{t}\right) \Rightarrow \frac{dy}{dx} = -\frac{c^2}{c^2 t^2} \qquad \frac{dy}{dx} = -\frac{c^2}{c^2 t^2}$ Correct expression for $\frac{dy}{dx}$ in terms of $\frac{dy}{dx}$		B1	
	$m_T = -\frac{1}{t^2} \Longrightarrow m_N = t^2$	Correct perpendicular gradient rule for their $\frac{dy}{dx}$ in terms of t (or c and t)	M1	
	$y - \frac{c}{t} = "t^2"(x - ct) \mathbf{or}$ $y = "t^2"x + b \Rightarrow \frac{c}{t} = "t^2"(ct) + b \Rightarrow b = \dots$	Correct straight line method with a changed gradient in terms of t (or c and t) with coordinates correctly placed. Condone the use of $y = mx + c$ instead of e.g. $y = mx + b$	M1	
	$ty - c = t^3 x - ct^4 \text{or} y = t^2 x + \frac{c}{t} - ct^3$ $\Rightarrow t^3 x - ty = c(t^4 - 1)^*$	Fully correct proof with at least one intermediate line before printed answer but allow if equation reversed and/or order altered e.g., $(-1+t^4)c = -ty + t^3x$	A1*	
	Score a maximum of 0110 if they start	with just $\frac{dy}{dx} = -\frac{1}{t^2}$ and 0010 if just $m_N = t^2$	(4)	

Question Number	Scheme	Notes	Marks
9(b)	$(8, 2) \Rightarrow \text{e.g., } c^2 = 16, c = 4;$ $ct = 8 \text{ or } \frac{c}{t} = 2 \Rightarrow t = 2$	Correct values for c and t seen, used or implied (e.g., by correct normal). If $c = \pm 4$, $t = \pm 2$ then the positive values must be implied by subsequent work	B1
	Note that another way of finding <i>t</i> is by	* * *	
	$\Rightarrow 8t^3 - 2t = 4(t^4 - 1) \Rightarrow 4t^4 - 8t^3 + 2t - 4 = (t - 2)(4t^3 + 2) = 0 \Rightarrow t = 2$		
	normal: $8x - 2y = 60 \Rightarrow$	Uses their values of c and t in the given normal $t^3x - ty = c(t^4 - 1)$ [could repeat the work in (a) with $y = 16x^{-1}$] and substitutes	
	$y = 4x - 30 \text{ or } x = \frac{15}{2} + \frac{1}{4}y$ $\Rightarrow (4x - 30)^2 = 6x \text{ or } y^2 = 45 + \frac{3}{2}y$	into the parabola to obtain a quadratic equation. Note that appropriate work must be seen for this mark.	M1
	$\Rightarrow (4x - 30) = 0x \text{ of } y = 43 + \frac{1}{2}y$	$4x-30 = \sqrt{6x}$ must be followed by a credible attempt to square (i.e., a 3TQ on LHS andx on the RHS) but see note below	
	Note that replacing x with e.g	g., $k^2 \text{ in } 4x - 30 = \sqrt{6x} \to 0$	
	$4k^2 - 30 = \sqrt{6} k \Rightarrow k = \frac{\sqrt{6} \pm \sqrt{6 - 4(4)}}{2(4)}$	$\frac{(-30)}{(-30)} = \frac{5\sqrt{6}}{4}, -\sqrt{6} \Rightarrow x = \frac{75}{8}, 6$	
	Scores the M1 for the quadratic in k and the dM1 for solving via usual rules and also reaching $x =$ by squaring.		
	$16x^{2} - 246x + 900 = 0 \Rightarrow 8x^{2} - 123x + 450 = 0$ \Rightarrow (8x - 75)(x - 6) = 0 \Rightarrow x = or $2y^{2} - 3y - 90 = 0 \Rightarrow (2y - 15)(y + 6) = 0 \Rightarrow y =$	Solves 3TQ (usual rules – one correct root if no working). Requires previous method mark.	dM1
	$x = \frac{75}{8}$, $y = \frac{15}{2}$ or e.g., $Q(9.375, 7.5)$	Correct values/coordinates. Allow any equivalent fractions. If a second point is given e.g., (6, -6) or (6, 6) score A0 if it is not rejected in (b).	A1
		50010 110 11 10 15 110 110 110 110 110 1	(4)
Alt	c=4, t=2	Correct values for c and t seen or used	B1
Approaches	Let Q have coordinates $(\frac{3}{2}k^2, 3k)$:		
using parametric	Substituting into the normal with $c = 4$ and $t = 2$:		
coords	$8\left(\frac{3}{2}k^2\right) - 2(3k) = 4(16-1)$		
	OR Since gradient of normal to hyperbola $=t^2=4$,		M1
	gradient of AQ where A is $(8, 2) = \frac{3k-2}{\frac{3}{2}k^2-8} = 4$		
	Forms a quadratic equation with their values. The equation in case 2 implies the B1.		
	$12k^2 - 6k = 60$	Solves 3TQ (usual rules – one correct	
	or $3k-2=6k^2-32 \Rightarrow 6k^2-3k-30=0$	root if no working) and proceeds to a value of x or y	dM1
	$\Rightarrow 2k^2 - k - 10 = 0 \Rightarrow (2k - 5)(k + 2) = 0 \Rightarrow k = \dots \left[\frac{5}{2}\right]$ $\Rightarrow x = \dots \text{ or } y = \dots$	Requires previous method mark.	
	$x = \frac{75}{8}$, $y = \frac{15}{2}$ or e.g., $Q\left(9\frac{3}{8}, 7\frac{1}{2}\right)$	Correct values/coordinates. Allow any equivalent fractions. If a second point is given e.g., (6, -6) or (6, 6) score A0 if it is not rejected in (b).	A1
			(4)

Question Number	Scheme	Notes	Marks		
9(c)	$R(\frac{3}{2},0)$				
	Correct coordinates for the focus seen or used. Can score anywhere e.g., written across the				
	question. Condone sight of $(0, \frac{3}{2})$ if used correctly e.g. in gradient calculation. If on a diagram,				
	accept $\frac{3}{2}$ appropriately placed. Accept 1.5, $\frac{6}{4}$ etc. for $\frac{3}{2}$. Just "a or $x = \frac{3}{2}$ " or " $R = \frac{3}{2}$ " is				
	insufficient. There must be some recognition of the position of R .				
	Allow work with decimals for the 3 M marks.				
	$QR: \text{ e.g., } y-0 = \left(\frac{\frac{15}{2}-0}{\frac{75}{8}-\frac{3}{2}}\right)(x-\frac{3}{2})$	e.g., $y - 0 = \left(\frac{\frac{15}{2} - 0}{\frac{75}{8} - \frac{3}{2}}\right)(x - \frac{3}{2})$ or $y = \left(\frac{\frac{15}{2} - 0}{\frac{75}{8} - \frac{3}{2}}\right)x + c \Rightarrow 0 = \frac{20}{21}\left(\frac{3}{2}\right) + c \Rightarrow c = \dots$			
	Correctly forms equation of QR for their Q and R . Q could be "made up" or be an incorrect choice from part (b) but must have real coordinates (A, B) , $A > 0$, $B \ne 0$ so allow e.g., $(6, 6)$				
	and $(6, -6)$. R must be of form $(\alpha, 0)$, $\alpha > 0$ Allow if a correct gradient is seen but wrongly calculated before line equation is given. If using $y = mx + c$ the equation must be formed correctly and " $c =$ " reached following correct				
	•	ent of $(\alpha, 0)$.			
		, $c =$ must find both m and c with one correct			
	M0 for a vertical line of 20 10 3 Subs	or if a normal gradient is used titutes $x = -\alpha$, $\alpha > 0$ into their equation to find a			
	$y = \frac{20}{21}x - \frac{10}{7}, x = -\frac{3}{2}$ $\Rightarrow y = \frac{20}{21}\left(-\frac{3}{2}\right) - \frac{10}{7} = -\frac{10}{7} - \frac{10}{7} = -\frac{20}{7}$ Substitution	value for the y coordinate. Must be using a consistent α	dM1		
	21(2)7 7 7 7	Requires previous M mark.			
	$S\left(-\frac{3}{2},-\frac{20}{7}\right) \Rightarrow$	Applies correct distance formula for their $Q(A, B)$, $A > 0$, $B \ne 0$ and			
		$S(-\alpha, \pm \beta)$ $\alpha > 0$ and consistent, $\beta \neq 0$	ddM1		
	$QS = \sqrt{\left(\frac{75}{8} - \left(-\frac{3}{2}\right)\right)^2 + \left(\frac{15}{2} - \left(-\frac{20}{7}\right)\right)^2}$ Implied by 15.017857 otherwise working must be seen Requires both previous M marks. Note that using $(6, 6)$ or $(6, -6) \rightarrow QS = \frac{25}{2}$				
		$\frac{1}{196} + \frac{21025}{196} = \sqrt{\frac{707281}{3136}} = $	A1		
	Correct exact distance. Any exact equiva	lent e.g., $15\frac{1}{56}$ and may not be in simplest form			
Alt For the	$QS = QR + RS$ but $QR = $ shortest distance of Q to directrix $= \frac{75}{8} + \frac{3}{2} = \frac{87}{8}$				
last two	$QS = \sqrt{\left(0 - \left(-\frac{20}{7}\right)\right)^2 + \left(\frac{20}{7}\right)^2}$	$\left(\frac{3}{2} - \left(-\frac{3}{2}\right)\right)^2 + \frac{87}{8} = \frac{29}{7} + \frac{87}{8} = \frac{841}{56}$			
marks (QS = QR + RS)	M1: A full method correct for their	Q and S. Implied only by awrt 15.017857 distance (any equivalent)			
	y s R	(8, 2) x	(5)		
			Total 13		

PAPER TOTAL: 75 marks